Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
FEBS J ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500384

RESUMO

Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.

2.
Plant Biotechnol J ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050338

RESUMO

Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi® ) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi® , DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.

3.
Acta Biomater ; 170: 142-154, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586448

RESUMO

Gastric cancer (GC) is the fourth leading cause of cancer-related deaths worldwide and, therefore, it is urgent to develop new and more efficient therapeutic approaches. Foretinib (FRT) is an oral multikinase inhibitor targeting MET (hepatocyte growth factor receptor) and RON (recepteur d'origine nantais) receptor tyrosine kinases (RTKs) that has been used in clinical trials for several solid tumors. Targeted uptake of therapeutic polymeric nanoparticles (NPs) represents a powerful approach in cancer cell drug delivery. Previously, a nanodelivery system composed of polymeric NPs functionalized with B72.3 antibody, which targets the tumor-associated antigen Sialyl-Tn (STn), has been developed. Herein, these NPs were loaded with FRT to evaluate its capacity in delivering the drug to multicellular tumors spheroids (MCTS) and mouse models. The data indicated that B72.3 functionalized FRT-loaded PLGA-PEG-COOH NPs (NFB72.3) specifically target gastric MCTS expressing the STn glycan (MKN45 SimpleCell (SC) cells), leading to a decrease in phospho-RTKs activation and reduced cell viability. In vivo evaluation using MKN45 SC xenograft mice revealed that NFB72.3 were able to decrease tumor growth, reduce cell proliferation and tumor necrosis. NFB72.3-treated tumors also showed inactivation of phospho-MET and phospho-RON. This study demonstrates the value of using NPs targeting STn for FRT delivery, highlighting its potential as a therapeutic application in GC. STATEMENT OF SIGNIFICANCE: Despite the advances in gastric cancer therapeutics, it remains one of the diseases with the highest incidence and mortality in the world. Combining targeted therapies with a controlled drug release is an attractive strategy to reduce drug cytotoxic effects and improve specific drug delivery efficiency to the cancer cells. Thus, we developed nanoparticles loaded with a tyrosine kinase inhibitor and targeting a specific tumor glycan exclusive of cancer cells. In in vivo gastric cancer xenograft mice models, these nanoparticles efficiently reduced tumor growth, cell proliferation and tumor necrosis area and inactivated phosphorylation of targeting receptors. This approach represents an innovative therapeutic strategy with high impact in gastric cancer.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Polímeros/uso terapêutico , Polissacarídeos , Necrose , Linhagem Celular Tumoral
4.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292721

RESUMO

The majority of the world population carry the gastric pathogen Helicobacter pylori. Fortunately, most individuals experience only low-grade or no symptoms, but in many cases the chronic inflammatory infection develops into severe gastric disease, including duodenal ulcer disease and gastric cancer. Here we report on a protective mechanism where H. pylori attachment and accompanying chronic mucosal inflammation can be reduced by antibodies that are present in a vast majority of H. pylori carriers. These antibodies block binding of the H. pylori attachment protein BabA by mimicking BabA's binding to the ABO blood group glycans in the gastric mucosa. However, many individuals demonstrate low titers of BabA blocking antibodies, which is associated with an increased risk for duodenal ulceration, suggesting a role for these antibodies in preventing gastric disease.

5.
Adv Sci (Weinh) ; 10(24): e2300588, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340602

RESUMO

Alterations of the glycosylation machinery are common events in cancer, leading to the synthesis of aberrant glycan structures by tumor cells. Extracellular vesicles (EVs) play a modulatory role in cancer communication and progression, and interestingly, several tumor-associated glycans have already been identified in cancer EVs. Nevertheless, the impact of 3D tumor architecture in the selective packaging of cellular glycans into EVs has never been addressed. In this work, the capacity of gastric cancer cell lines with differential glycosylation is evaluated in producing and releasing EVs when cultured under conventional 2D monolayer or in 3D culture conditions. Furthermore, the proteomic content is identified and specific glycans are studied in the EVs produced by these cells, upon differential spatial organization. Here, it is observed that although the proteome of the analyzed EVs is mostly conserved, an EV differential packaging of specific proteins and glycans is found. In addition, protein-protein interaction and pathway analysis reveal individual signatures on the EVs released by 2D- and 3D-cultured cells, suggesting distinct biological functions. These protein signatures also show a correlation with clinical data. Overall, this data highlight the importance of tumor cellular architecture when assessing the cancer-EV cargo and its biological role.


Assuntos
Vesículas Extracelulares , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteômica , Vesículas Extracelulares/metabolismo , Linhagem Celular , Polissacarídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155874

RESUMO

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Assuntos
Neoplasias Gástricas , Sindecana-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Sindecana-4/genética , Sindecana-4/metabolismo
7.
Glycoconj J ; 40(4): 421-433, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074623

RESUMO

Expression of sialyl Lewis X (SLeX) is a well-documented event during malignant transformation of cancer cells, and largely associates with their invasive and metastatic properties. Glycoproteins and glycolipids are the main carriers of SLeX, whose biosynthesis is known to be performed by different glycosyltransferases, namely by the family of ß-galactoside-α2,3-sialyltransferases (ST3Gals). In this study, we sought to elucidate the role of ST3GalIV in the biosynthesis of SLeX and in malignant properties of gastrointestinal (GI) cancer cells. By immunofluorescent screening, we selected SLeX-positive GI cancer cell lines and silenced ST3GalIV expression via CRISPR/Cas9. Flow cytometry, immunofluorescence and western blot analysis showed that ST3GalIV KO efficiently impaired SLeX expression in most cancer cell lines, with the exception of the colon cancer cell line LS174T. The impact of ST3GalIV KO in the biosynthesis of SLeX isomer SLeA and non sialylated Lewis X and A were also evaluated and overall, ST3GalIV KO led to a decreased expression of SLeA and an increased expression in both LeX and LeA. In addition, the abrogation of SLeX on GI cancer cells led to a reduction in cell motility. Furthermore, ST3GalVI KO was performed in LS174T ST3GalIV KO cells, resulting in the complete abolishment of SLeX expression and consequent reduced motility capacity of those cells. Overall, these findings portray ST3GalIV as the main, but not the only, enzyme driving the biosynthesis of SLeX in GI cancer cells, with a functional impact on cancer cell motility.


Assuntos
Neoplasias do Colo , Humanos , Movimento Celular , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Glicolipídeos , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
8.
J Biol Chem ; 298(11): 102546, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181793

RESUMO

Heparan sulfate (HS) proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and extracellular matrix. By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-extracellular matrix crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either exostosin-like glycosyltransferase 2 (EXTL2) or EXTL3 and revealed their regulatory roles in both HS and chondroitin sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that KO of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.


Assuntos
Heparitina Sulfato , Neoplasias Gástricas , Humanos , Heparitina Sulfato/metabolismo , Neoplasias Gástricas/genética , Glicosiltransferases/genética , Proteoglicanas de Heparan Sulfato , Movimento Celular , Microambiente Tumoral , N-Acetilglucosaminiltransferases/genética , Proteínas de Membrana
11.
Mater Today Bio ; 16: 100417, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36105678

RESUMO

Drug delivery using nanoparticles (NPs) represents a potential approach for therapy in cancer, such gastric cancer (GC) due to their targeting ability and controlled release properties. The use of advanced nanosystems that deliver anti-cancer drugs specifically to tumor cells may strongly rely on the expression of cancer-associated targets. Glycans aberrantly expressed by cancer cells are attractive targets for such delivery strategy. Sialylated glycans, such as Sialyl-Tn (STn) are aberrantly expressed in several epithelial tumors, including GC, being a potential target for a delivery nanosystem. The aim of this study was the development of NPs surface-functionalized with a specific antibody targeting the STn glycan and further evaluate this nanosystem effectiveness regarding its specificity and recognition capacity. Our results showed that the NPs surface-functionalized with anti-STn antibody efficiently are recognized by cells displaying the cancer-associated STn antigen under static and live cell monitoring flow conditions. This uncovers the potential use of such NPs for drug delivery in cancer. However, flow exposure was disclosed as an important biomechanical parameter to be taken into consideration. Here we presented an innovative and successful methodology to live track the NPs targeting STn antigen under shear stress, simulating the physiological flow. We demonstrate that unspecific binding of NPs agglomerates did not occur under flow conditions, in contrast with static assays. This robust approach can be applied for in vitro drug studies, giving valuable insights for in vivo studies.

12.
Glycoconj J ; 39(5): 579-586, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36001187

RESUMO

The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.


Assuntos
Neoplasias , Polissacarídeos , Glicosilação , Humanos , Polissacarídeos/metabolismo
13.
Trends Cancer ; 8(6): 448-455, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35260378

RESUMO

Although the ErbB receptors remain incontrovertible drivers of human neoplastic transformation, the clinical performance of ErbB-directed therapeutics is significantly undermined by the emergence of molecular resistance. The ErbB extracellular region undergoes extensive post-translational glycosylation, which crucially impacts receptor structure, functionality, and therapeutic response, thereby hindering efforts towards the successful translation of such molecular insights into the clinical setting. The unraveling of the ErbB site-specific glycome will allow for the design of more efficient ErbB-directed therapeutic strategies capable of circumventing molecular resistance, the establishment of novel prognostic and predictive clinical biomarkers supporting improved patient stratification, and the rational guidance of therapeutic decisions.


Assuntos
Neoplasias , Receptores ErbB/metabolismo , Glicosilação , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Prognóstico
14.
J Pers Med ; 12(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35207669

RESUMO

The genus Helicobacter is composed of bacteria that colonize both the human and animal gastrointestinal tract. Helicobacter pylori infects half of the world's population, causing various disorders, such as gastritis, duodenitis and gastric cancer. Additionally, non-Helicobacter pylori Helicobacter species (NHPH) are commonly found in the stomach of pigs, dogs and cats. Most of these species have zoonotic potential and prevalence rates of 0.2-6.0%, and have been described in human patients suffering from gastric disorders undergoing a gastric biopsy. The aim of this study was to determine the occurrence of Helicobacter spp. in the stomach of patients with gastric cancer (n = 17) and obese (n = 63) patients. Furthermore, the outcome of the Helicobacter eradication treatment and the current infection status was evaluated. Overall, based on the genus-specific PCR followed by sequencing, DNA from Helicobacter spp. was detected in 46.3% of the patients, including single infections with H. pylori in 43.8% of the patients and mixed infections with H. pylori and canine- or feline-associated H. felis in 2.5%. About 32.5% of the patients had been subjected to previous Helicobacter eradication therapy and the triple standard therapy was the most frequent scheme (42.3%). In 48.0% of the patients who received eradication treatment, bacteria were still detected, including one mixed infection. In 23.1% of the patients who reported that a subsequent test had been performed to confirm the elimination of the bacteria, Helicobacter were still detected. In conclusion, although in a smaller percentage, NHPH may also be present in the human stomach. Thus, specific NHPH screening should be included in the diagnostic routine. The continued presence of H. pylori in the stomach of patients recently subjected to eradication schemes raises questions about the efficacy of the current Helicobacter treatments.

16.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164058

RESUMO

The incidence of gastrointestinal pathologies (cancer in particular) has increased progressively, with considerable morbidity and mortality, and a high economic impact on the healthcare system. The dietary intake of natural phytochemicals with certain bioactive properties has shown therapeutic and preventive effects on these pathologies. This includes the cruciferous vegetable derivative phenylethyl isothiocyanate (PEITC), a bioactive compound present in some vegetables, such as watercress. Notably, PEITC has antioxidant, anti-inflammatory, bactericidal, and anticarcinogenic properties. This review summarized the current knowledge on the role of PEITC as a potential natural nutraceutical or an adjuvant against oxidative/inflammatory-related disorders in the gastrointestinal tract. We also discussed the safe and recommended dose of PEITC. In addition, we established a framework to guide the research and development of sustainable methodologies for obtaining and stabilizing this natural molecule for industrial use. With PEITC, there is great potential to develop a viable strategy for preventing cancer and other associated diseases of the gastrointestinal tract. However, this topic still needs more scientific studies to help develop new PEITC products for the nutraceutical, pharmaceutical, or food industries.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Isotiocianatos/farmacologia , Linhagem Celular Tumoral , Suplementos Nutricionais , Humanos
17.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205658

RESUMO

Innovative strategies have been proposed to increase drug delivery to the tumor site and avoid cytotoxicity, improving the therapeutic efficacy of well-established anti-cancer drugs. Alterations in normal glycosylation processes are frequently observed in cancer cells and the resulting cell surface aberrant glycans can be used as direct molecular targets for drug delivery. In the present review, we address the development of strategies, such as monoclonal antibodies, antibody-drug conjugates and nanoparticles that specific and selectively target cancer-associated glycans in tumor cells. The use of nanoparticles for drug delivery encompasses novel applications in cancer therapy, including vaccines encapsulated in synthetic nanoparticles and specific nanoparticles that target glycoproteins or glycan-binding proteins. Here, we highlight their potential to enhance targeting approaches and to optimize the delivery of clinically approved drugs to the tumor microenvironment, paving the way for improved personalized treatment approaches with major potential importance for the pharmaceutical and clinical sectors.

18.
FEBS Lett ; 596(4): 403-416, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978080

RESUMO

Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer treatment that exploits the host's immune system to fight cancer. CAR-T cell therapy relies on immune cells being modified to express an artificial receptor targeting cancer-specific markers, and infused into the patients where they will recognize and eliminate the tumour. Although CAR-T cell therapy has produced encouraging outcomes in patients with haematologic malignancies, solid tumours remain challenging to treat, mainly due to the lack of cancer-specific molecular targets and the hostile, often immunosuppressive, tumour microenvironment. CAR-T cell therapy also depends on the quality of the injected product, which is closely connected to CAR design. Here, we explain the technology of CAR-Ts, focusing on the composition of CARs, their application, and limitations in cancer therapy, as well as on the current strategies to overcome the challenges encountered. We also address potential future targets to overcome the flaws of CAR-T cell technology in the treatment of cancer, emphasizing glycan antigens, the aberrant forms of which attain high tumour-specific expression, as promising targets for CAR-T cell therapy.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Polissacarídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/genética , Sítios de Ligação , Sequência de Carboidratos , Engenharia Genética/métodos , Glicosilação , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Polissacarídeos/química , Ligação Proteica , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/citologia , Linfócitos T/transplante , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
19.
Dev Cell ; 57(4): 440-450.e7, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34986324

RESUMO

Regeneration of adult mammalian central nervous system (CNS) axons is abortive, resulting in inability to recover function after CNS lesion, including spinal cord injury (SCI). Here, we show that the spiny mouse (Acomys) is an exception to other mammals, being capable of spontaneous and fast restoration of function after severe SCI, re-establishing hind limb coordination. Remarkably, Acomys assembles a scarless pro-regenerative tissue at the injury site, providing a unique structural continuity of the initial spinal cord geometry. The Acomys SCI site shows robust axon regeneration of multiple tracts, synapse formation, and electrophysiological signal propagation. Transcriptomic analysis of the spinal cord following transcriptome reconstruction revealed that Acomys rewires glycosylation biosynthetic pathways, culminating in a specific pro-regenerative proteoglycan signature at SCI site. Our work uncovers that a glycosylation switch is critical for axon regeneration after SCI and identifies ß3gnt7, a crucial enzyme of keratan sulfate biosynthesis, as an enhancer of axon growth.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/patologia , Modelos Animais de Doenças , Glicosilação , Camundongos , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Coluna Vertebral/fisiopatologia
20.
Helicobacter ; 27(1): e12867, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34967491

RESUMO

Helicobacter pylori infects half of the world population, being associated with several gastric disorders, such as chronic gastritis and gastric carcinoma. The Helicobacter genus also includes other gastric helicobacters, such as H. heilmannii¸ H. ailurogastricus, H. suis, H. felis, H. bizzozeronii, and H. salomonis. These gastric helicobacters colonize both the human and animal stomach. The prevalence of gastric non-Helicobacter pylori Helicobacter (NHPH) species in humans has been described as low, and the in vitro binding to the human gastric mucosa was never assessed. Herein, human gastric tissue sections were used for the evaluation of the tissue glycophenotype and for the binding of gastric NHPH strains belonging to different species. Histopathological evaluation showed that 37.5% of the patients enrolled in our cohort presented chronic gastritis, while the presence of neutrophil or eosinophilic activity (chronic active gastritis) was observed in 62.5% of the patients. The secretor phenotype was observed in 68.8% of the individuals, based on the expression of Lewis B antigen and binding of the UleX lectin. The in vitro binding assay showed that all the NHPH strains evaluated were able to bind, albeit in low frequency, to the human gastric mucosa. The H. heilmannii, H. bizzozeronii, and H. salomonis strains displayed the highest binding ability both to the gastric superficial epithelium and to the deep glands. Interestingly, we observed binding of NHPH to the gastric mucosa of individuals with severe chronic inflammation and intestinal metaplasia, suggesting that NHPH binding may not be restricted to the healthy gastric mucosa or slight chronic gastritis. Furthermore, the in vitro binding of NHPH strains was observed both in secretor and non-secretor individuals in a similar frequency. In conclusion, this study is the first report of the in vitro binding ability of gastric NHPH species to the human gastric mucosa. The results suggest that other glycans, besides the Lewis antigens, could be involved in the bacterial adhesion mechanism; however, the molecular intervenients remain unknown.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Animais , Mucosa Gástrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...